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Abstract 

vi 

An analysis capability is developed to predict the static and dynamic crushing 
response of a Dovetail spherical impact limiter. The capability includes (1) a set 
of design relations to determine maximum limiter impact velocity and decelera- 
tion, (2) qualitative expressions to determine the effects of stress waves on limiter 
dynamic response, and (3) relations to establish the deceleration level at which 
payload “cannonballing,” i.e., penetration of the payload sphere into the Dove- 
tail limiter, occurs. Pertinent geometric and material assumptions are presented 
and the governing differential equation of motion is developed using principles 
of fluid mechanics. 
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Analysis of the Crushing of a Dovetail Phenolic 

Honeycomb Spherical Impact Limiter 

1. Introduction 
In the development of unmanned space vehicles, con- 

siderable emphasis has been placed on the development 
of energy-dissipating materials and devices capable of 
protecting scientific payloads during lunar or planetary 
landings. Conditions of omnidirectional impact have 
generally required that the payload configuration be 
spherical. This requirement has implied that the energy- 
dissipating mediums possess spherical curvature capa- 
bility, thereby giving rise to an 
tion consisting of a spherical 
energy-dissipating shell. 

A new type of nonhexagonal 

impact limiter configura- 
payload encased in an 

cell phenolic honeycomb 
possessing good spherical curvature capability and energy- 
dissipating characteristics has recently been developed 
(Ref. 1). This honeycomb, lmown as Dovetail, is shown 
schematically in Fig. 1. It has a constant cell foil thick- 
ness and consists of phenolic resin built up on a glass 
cloth core. The Dovetail is classified according to cell 
size, cell configuration, and bulk weight density. 

An actual spherically curved specimen is shown in 
Fig. 2. This specimen has a curvature ratio R,/d (pay- 
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load radius/core thickness) of 1.8. This curvature capa- 
bility represents an order of magnitude improvement in 
comparison to the best curving results obtained for hex- 
agonal cell honeycomb (Ref. 2). 

A. Objective and Scope 

The purpose of this report is to present a method of 
theoretically predicting the static and dynamic response 
characteristics of a Dovetail phenolic honeycomb spheri- 
cal impact limiter during vertical crushing against a flat 
unyielding surface. The static response includes the de- 
velopment of the crushing force as a function of the 
Dovetail material properties and limiter geometry, and 
the expression of this force in terms of the crushing depth. 
The dynamic response includes the determination of the 
maximum impact velocity and deceleration experienced 
by a Dovetail limiter. Included in the dynamic analysis 
are the effects of thickness efficiency (a parameter describ- 
ing the limit of Dovetail crushability before “bottoming 
out” occurs) and stress waves generated by high velocity 
impact of the limiter. The so-called cannonball effect, 
i.e., the possible penetration of the payload sphere into 
the Dovetail honeycomb during impact, is considered by 
determining the deceleration limit at which this phe- 
nomenon occurs. 

1 
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Fig. 1. Schematic of Dovetail honeycomb section 

It  is intended that this theoretical analysis be imple- 
mented in the future by comparing the mathematical 
force-displacement response characteristics of a Dovetail 
spherical limiter with actual test data. At that time, de- 
sign charts based on the relations developed in this anal- 
ysis will also be presented for specific Dovetail limiters. 
Finally, the analysis capability will be extended to include 
the effects of surface curvature on the energy-dissipating 
capability of a Dovetail spherical limiter. 

B. Assumptions 

In developing the limiter analytic model, it is assumed 
that the payload is a rigid body and that the cells of the 
Dovetail honeycomb are geometrically identical and uni- 
formly distributed throughout the limiter. This latter 
assumption implies that spherical geometric symmetry 
exists and, as a consequence, there is no variation in 
circumferential bulk density of the Dovetail. For small 
Dovetail cell sizes, this assumption is valid since the 
honeycomb tends to approach a continuous medium. 
Also, since the Dovetail honeycomb is composed of small 
cell sizes, it is assumed that continuous functional theory 
applies. Finally, it is assumed that the Dovetail honey- 

comb is infinitely rigid in shear and that the only failure 
mode is crushing of the honeycomb. 

Upon impact, it is assumed that the limiter is moving 
vertically with respect to a local, flat, rigid surface ter- 
rain and without rotation about its own gravity center. 
Thus, the impact kinetic energy is composed only of trans- 
lational energy, and energy dissipation is provided solely 
by crushing of the Dovetail honeycomb. 

C. Notation 

During the deceleration process, the spherical Dovetail 
impact limiter will assume a general crushed configura- 
tion as shown in Fig. 3. The notation associated with this 
configuration, including .additional pertinent parameters, 
is as follows: 

Rp = payload radius 
d = Dovetail core thickness 

uOB = crushing stress at crushing boundary AB 
AB = area at crushing boundary 

4 = angular loation of general Dovetail cell 
0 = +moa 
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ig. 2. Spherically curved ovetail honeycomb specimen 

A = length of general Dovetail cell 

x = height of CG above crushing surface 

xcs = height of crushing boundary above crushing 
surface 

V 
V = impact limiter velocity 

artially crushed Dovetail spherical 
impact limiter 

W, = payload total weight 

WD = Dovetail total weight 

( WflTwD) 
7 = payload fraction 

p, = payload weight density 

po = Dovetail weight density 

a = cross-sectional area of Dovetail cell 
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II. Static Analysis 

A. Force at  the Crushing Boundary 

1. General force relationship. As shown in Fig. 3, the 
impact limiter configuration consists of a smalI region of 
compressed particles that are at rest in a Newtonian ref- 
erence frame, a boundary at which crushing of the Dove- 
tail honeycomb is taking place, and of a region of particles 
that are above the crushing boundary and are in uniform 
vertical motion. However, the region of particles at rest 
represents only a very small but finite layer of crushed 
Dovetail particles. The majority of particles previously 
brought to rest split from the honeycomb material and 
are mostly contained within the hollow Dovetail cells. 
This crushing phenomenon ideally results in a flat crush- 
ing boundary rather than the spherical boundary devel- 
oped during crushing of balsa wood impact limiters 
(Ref. 3). 

Since X C ~  N 0, the force at the crushing boundary and 
the force at the limiter-surface interface are for all prac- 
tical purposes identical. Thus, the force at the crushing 
boundary may be considered to be a function only of x 
rather than x - Q ~ .  This simplification geometrically 
facilitates the development of the force at  the crushing 
boundary. 

The force developed at the crushing boundary is of 
particular interest, since the area under the crushing 
force-displacement curve represents the maximum amount 
of kinetic energy that can be dissipated during the decel- 
eration process. Since x = %(e),  this force can be conveni- 
ently expressed by the relation: 

Equation (1) indicates that the total crushing force de- 
pends on the limiter geometry and crushing stress of 

A AXIS 

4 

the Dovetail honeycomb. The crushing stress at any point 
along the crushing boundary depends on the honeycomb 
bulk density, cell shape, and angle of loading of the Dove- 
tail cell at that point. Data indicating the effect of these 
parameters on the axial crushing stress of Dovetail phe- 
nolic honeycomb have been experimentally developed 
and are contained in Ref. 1. 

Since the effect of angIe loading on the axial crushing 
stress of Dovetail is virtually insensitive to changes in 
material bulk density and cell shape, the crushing stress 
of Dovetail at the crushing boundary may be expressed as 

where 

u0 = axial crushing stress of Dovetail at density pD and 
cell shape a 

5 = off-axis crushing stress reduction parameter 

Based on experimental data, the polynomial expressions 
for u0 and 5 may be developed and substituted in Eq. (2). 
Recognizing that the ultimate objective is to substitute 
Eq. (2) in Eq. (1) and solve for F ( e ) ,  it is convenient to 
express uCB = u ~ ~ ( + , ~ ) .  In so doing, it is necessary to de- 
velop a = a(+,e, and pD = These relationships are 
developed below. 

2. Cell &ape. Figure 4 shows two views of a typical 
Dovetail cell in a spherically curved condition, The cell 
shape a,+, e )  is described quantitatively through a rela- 
tionship developed for the cross-sectional cell area. The 
cross-sectional area at cell length A is approximately 
trapezoidal and can be expressed as 

t MAXIMUM DOVETAIL EXPANSION 

- 
X 

Fig. 4. Typical spherically curved Dovetail cell 
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But, by geometry Since the Dovetail unit cell weight is constant, 

(4) 

Also, since the Dovetail cells are expanded in spherical 
curvature 

g=z (5) 

Substituting Eqs. (4) and (5) in Eq. (3) yields 

But, from the geometry shown in Fig. 3: 

(7) 
2 

cos e = - R, + A 

and 

X 
cos+ = ~ R, + d 

Eliminating x from Eqs. (7) and (8) results in the expres- 
sion 

Substituting Eq. (9) in Eq. (6) yields 

3. Dovetail weight density. The weight per unit volume 
of Dovetail honeycomb surrounding the payload sphere 
is defined as the Dovetail weight density. Since the honey- 
comb material is composed of individual cells having 
constant unit weight along the cell axis, a radial variation 
in Dovetail density exists. This variation does not exist 
in the homogeneous impact limiters such as those con- 
taining balsa wood as the energy-dissipating material. 

Considering a shell of Dovetail honeycomb having a 
core thickness A, it follows that the Dovetail density may 
be expressed as: 

Thus, Eq. (11) becomes 

3wD 
PO(& = 4ird (3R; 4- 3R,A + Az) 

Substituting Eq. (9) in Eq. (13) yields 

3WD 

Eqs. (10) and (14) represent transformation relations 
for converting the polynomial expression for ( T , , ~ ~ ~ , ~ )  to 
uO(+,e)' 

4. Differential limiter area. It now remains to deter- 
mine d A  = dA(+ , , )  such that the integral expression for 

may be completely established. From the geometry 
of Fig. 3, it can readily be shown that 

dA = T (R, + d)2 cos2 0 [tanz (+ + d+) - tan2 +] (15) 

Solving Eq. (15), neglecting higher order terms, yields 

5. Final force relationship. Substituting Eq. (2) (trans- 
formed) and Eq. (16) in Eq. (1) yields 

Equation (17) presents the crushing force in a form 
that is more convenient for a subsequent dynamic analy- 
sis. However, the static crushing force-displacement pro- 
file may be constructed from this equation by transforming 
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the independent variable 0 to crushing depth do. By geom- 
etry (Fig. 3) the crushing depth can be expressed as: 

Letting K = [ 1 + (R,/d)] and recognizing that p = 
[l - (8 /d ) ] ,  Eq. (21) becomes, after integration, 

Substituting Eq. (9) in Eq. (18) yields 

d c  = (Rp + d ) ( l -  COS0) (19) 

j j o K { % [ ( 1 - g ) ’  +(?)”I 

Equation (19) represents the transformation equation Rearranging terms and letting 
whereby F = F(d,, can be developed. 

B. Thickness Efficiency Effect Eq. (22) becomes 
During crushing of the Dovetail honeycomb, a crush- 

ing depth will be reached at which a marked increase 
2 3  + rA) 2 2  + 3L,t, (1 + 214 2 + (9)3 in force is required to continue the crushing process. In 4go 2Y20 

a design sense, this crushing depth, which characterizes 
the onset of the “bottoming-out’’ region of the force- 
displacement diagram, represents the useful stroke limit 

- ’2 (F)’ - % (1 + 2k) = 0 (24) 2Go 

of the honeycomb core. The ratio of this useful stroke 
limit to the honeycomb core thickness is defined as thick- 
ness efficiency /3. It is this parameter that controls the 
maximum value of 0 (for a given R,/d ratio), which can 
be used in Eq. (17). 

The number of unknowns in Eq. (24) can be reduced 
by one by eliminating the factor k. This reduction is done 
by considering the Dovetail cell geometry shown in 
Fig. 4. For any curvature, it is clear that at the Dovetail 
outer surface 

In the case of Dovetail honeycomb, “bottoming-out’’ 
will occur when the crushed particles completely fill the 
centrally-loaded cell cavity. Thus, as an approximation 

- 
V, = l6 a ( A ,  da (geometric volume) 

(26) 

Solving for k: 

= - t f (d - 6) (2LD + 4kLD) (crushed particle volume) k = 0.353 [I + (E - l)’]% 
2 

where 

tf = Dovetail (wing) foil thickness 

Then from Eq. (6), 

Substituting Eq. (27) in Eq. (24) yields 
(20) 

2 3  + (2) 2 2  
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Although Eq. (28) is cubic in 2, only one positive real 
solution exists as is evident from a physical interpretation 
of Fig. 4. The value of thickness &ciency can then be 
obtained by substituting the solution of Eq. (28) in Eq. (23) 
and solving for p. 

To determine the maximum value of 8, it is seen from 
Eq. (8) that letting x = R, + 6 :  

(29) 
Rp + 6 
Rp + d cos 8 Y A X  = - 

But from the expressions for P and K ,  Eq. (29) may be 
rewritten as 

coseMAx=-=i---z K - P  P -  
K K 

Fig. 5. System of particles and control volume 

Thus, Eq. (17) is valid in the region 
Fx = force acting on system of particles 

P = general particle within control volume 

Q = general point on control volume boundary 
111. Dynamic Analysis 

A. Governing Differential Equation of Motion 

1. Derivation of equation of motion. To properly ac- 
count for the stopped mass effect on the deceleration of a 

venient to develop the equation of motion governing the 
deceleration process from principles of fluid mechanics. 
Specifically, the development is based on application of 
Newton's second law to a system or particles contained 
within a control volume that is accelerating and has mass 
crossing its boundaries. 

Newton's second law states that 

At 

(31) 
- "ltl> 

d Mx(t  + A t )  Dovetail phenolic honeycomb impact limiter, it is con- F x ( t )  = ,{ME(,)} = lim { 
A t - t o  

where M, = linear momentum of system of particles in 
X direction. 

Since the control volume and the system of particles 
coincide at time t ,  the linear momentum represents simply 
the sum of all particle momenta within the control volume. 
Thus, 

Such a system of particles and control vohme is d-~own 
in Fig. 5. Since the impact of the Dovetail limiter is ver- 
tical, only motion along an axis parallel to the velocity 
vector is considered. 

where 
- 
V = control volume 

S = system of particles 

II = particle velocity 

p = particle mass density 

u = velocity of mass transfer boundary 

At time t f At, the control volume and the system of 
particles within the control volume change to v ( t + A t )  and 
S ( t + A t ) ,  respectively. As the particle system changes, 
mass flows across the boundary of the control volume. 
This mass flow gives rise to a momentum flux that must 
be accounted for in the expression for linear momentum 
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in addition to the particle momenta within the con- 
trol volume. Thus, the expression for M Z c t  + A t )  may be 
written as 

The surface integral of Eq. (33) represents a linear aver- 
age of the momentum flux crossing the control volume 
boundary during the time interval At. As At + 0, this aver- 
age approaches the true momentum flux. The negative 
sign in front of the surface integral indicates that mass is 
leaving the control volume. 

Substituting Eqs. (32) and (33) in Eq. (31) and passing 
to the limit yields 

Equation (34) is known as the momentum theorem and 
agrees with the vector formulation presented in Ref. 4. 

The equation of motion governing the deceleration of 
the Dovetail honeycomb impact limiter can now be deter- 
mined by applying Eq. (34) to the system of particles 
within the control volume above the crushing boundary 
AB, shown in Fig. 3. 

The left-hand side of Eq. (34) represents the force act- 
ing at the crushing boundary. This force is a function of 
the impact limiter geometry and Dovetail material proper- 
ties, and has been developed as a function of 6 in Eq. (17). 

The right-hand side of Eq. (34)) consists of a volume 
and surface integral. With the assumption that all par- 
ticles within the control volume have the same velocity 
(thereby neglecting stress wave effects), the volume inte- 
gral becomes 

8 

The particle velocity qt), which is now the same as the 
impact limiter velocity & ( t )  (Fig. 3), appears outside the 
integral since it does not depend on location within the 
control volume. 

But, 
/. 

where mUc = uncrushed mass of the impact limiter. Thus, 
Eq, (35) becomes 

(37) 

By the same reasoning, the surface integral of Eq. (34) 
becomes 

~ ( , ~ p v ( u - u ) d A = k ( k - i , )  (38) 

Substituting Eqs. (37) and (38)) in Eq. (34) and differen- 
tiating yields 

(39) I,,) P d A  

. a  
Fa = mucz  + x-(muc) a t  - ;(; - kc) 

The surface integral of Eq. (39) can now be considered 
as the integral of the Dovetail bulk mass density over the 
area at the crushing boundary A,. Since the density de- 
pends on location within AcB, the integral of the density 
distribution over the area at the crushing boundary is 
equivalent to some average density multiplied by the same 
area. Thus, 

From Fig. 3, it is clear that mUc can be expressed as 

where 

70 = crushed volume of the sphere 

g = gravitational constant 
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Also, from the geometry shown in Fig. 3, it is possible to 
express the volume integral of Eq. (42) as 

now 

az az a(x - z ~ )  
at a ( ~  - xC) a t  
-= 

Thus, Eq. (42) becomes 

Substituting Eqs. (40) and (44) in Eq. (39) yields 

F ,  = mu,% (45) 

Equation (45) is the differential equation of motion gov- 
erning the deceleration of a Dovetail honeycomb impact 
limiter. It represents the kinetic relationship between the 
force at the crushing boundary and the deceleration 
experienced by the impact limiter. 

A relationship* identical to that given by Eq. (45) was 
developed in an analysis of an omnidirectional impact 
limiter. The derivation approach was similar to that used 
above; however, the energy-dissipating material was con- 
sidered to be homogeneous with no radial variation in 
bulk density. 

2. Solution of equation of motion. Equation (45) may 
now be solved to determine the maximum impact velocity 
and deceleration of a spherical Dovetail honeycomb im- 
pact limiter. Noting that F, muo, and the limiter velocity V 
can be expressed as functions of displacement, Eq. (45) 
can be reduced to a first order differential equation as 
follows: 

(46 

‘JPL Internal Communication by Dr. R. R. Stephenson. 
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Integrating Eq. (46) between the initial and final limits of 
velocity and displacement results in 

From Fig. 3 it can be seen that the maximum impact 
velocity is the initial contact velocity Vz; and that for full 
utilization of the energy-dissipating material (Dovetail), 
bottoming-out should occur just as the limiter is brought 
to rest. Incorporating these characteristics in Eq. (47) and 
recalling that F, = F O B  since = 0 results in 

Integrating the left-hand side of Eq. (48) yields 

Using Eqs. (8) and (a), Eq. (49) may also be written as 

The crushing force F has been developed as F ( e ,  in 
Eq. (17), and may be substituted directly in Eq. (50). In 
developing muc(e), the following weight balance equation 
applies : 

muc g = m(Wp + WD) - Wc (51) 

where Wc = Dovetail honeycomb crushed weight. Con- 
sider now the spherical limiter segment shown in Fig. 6. 
For the elemental volume slice 

Fig. 6. Crushed segment of Dovetail impact limiter 
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Then, 

But, by geometry 

r =  xtanrp x = (R, + d)cos6 

dr=xsec2rpdrp dx=  (Rp+d)sinede 

Then, combining these relations gives 

T = ( R p  + d)cos8tanrp 

dr = (Rp + d)cosBsec2rpdrp 

Substituting Eqs. (53), (54), and (55) in Eq. (52) and changing the limits of integration yields 

(53) 

(54) 

(55) 

Substituting Eq. (14) in Eq. (56) and the resulting equation in Eq. (51) yields 

Substituting Eqs. (17) and (57) in Eq. (SO) yields 
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The maximum value of the bracketed portion of the 
integrand of Eq. (58) is the maximum deceleration jr, 
(in number of gs) of a Dovetail phenolic honeycomb 
spherical impact limiter. The corresponding solution of 
Eq. (58) yields the maximum impact velocity for the same 
Dovetail limiter. 

B. Stress Waves-Qualitative Effect on Dynamic- 
Response 

Equation (58) represents the solution of the differential 
equation of motion governing the average deceleration 
of a Dovetail phenolic honeycomb impact limiter. Only 
the average dynamic response characteristics are pre- 
dicted by Eq. (58), since Eq. (45) neglects stress varia- 
tions during crushing due to stress wave reversals. 
However, as the number of stress wave reversals in- 
creases, the solution as given by Eq. (58) becomes more 
satisfactory, since it is based on an integrated decelera- 
tion effect. Thus, a qualitative measure of the stress wave 
effect on the dynamic response of a Dovetail impact 
limiter during crushing may be obtained by developing 
an expression for the number of stress wave reversal 
cycles occurring in the total time required to stop the 
limiter. Since no exact lower bound can be established 
for the number of stress wave reversal cycles below which 
stress wave effects must be considered, it is arbitrarily 
assumed that the solution as given by Eq. (58) is satis- 
factory, provided ten or more cycles occur. 

Considering only the centrally loaded Dovetail cell, the 
number of stress wave reversal cycles is given by the 
relation 

N = T ( & )  

where 

2' = total limiter stopping time 

c = stress wave velocity along a Dovetail cell 

(59) 

It should be noted that Eq. (59) will give a conservative 
(lower) estimate of the number of stress wave reversal 
cycles, since the distance over which the wave travels 
is considered constant and equal to the Dovetail core 
depth d. Actually, the height of the centrally loaded cell 
diminishes during crushing, thereby, permitting more 
reversals to occur. Only the centrally loaded cell is con- 
sidered, since it represents the region of highest stress 
wave intensity. 

Now, using the more conservative (lower bound) mate- 
rial properties of phenolic resin rather than glass, the 
stress wave velocity e can be expressed as (see Ref. 5 )  : 

where 

E, = modulus of elasticity of phenolic resin 

y p  = weight density of phenolic resin 

Substituting Eq. (60) in Eq. (59) yields 

To determine the total stopping time T ,  use is made of 
Eq. (46) with the right-hand side expressed in terms of 8. 
Thus, 

Differentiating Eq. (8) and substituting the result in 
Eq. (62) yields 

VdV = - - (R,  + d )  sin8 de (2). 
Recognizing that wuc = mucg, Eq. (63) then becomes 

(R,  + d)sinBdB (64) 

Applying limits of integration to Eq. (64) gives 

and integrating the left-hand side yields 

Now, using the derivative of Eq. (8), 

dx - .(Rp + d )  sin B de 
v = d t =  a t  

de 
- (Rp + d)sine 

V(et 
.'. dt = 
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Substituting Eq. (65) in Eq. (66) and integrating yields 

*= INAX [ V2 - 2g(Rp + d)  le (L)e wuo s i n 6 d 6 ~  

- ( ~ p  + d)sinede 

(67) 

Substituting Eq. (67) in Eq. (61) yields 

J o  

As + e,,, the denominator of the integrand of Eq. (68) 
approaches 0, which implies that N+ a). To arrive at a 
finite numerical solution to Eq. (68) and still maintain 
conservative results, arbitrarily let 

Thus, Eq. (68) becomes 

J o  
(69) 

Another measure of the stress wave effect on the 
dynamic response of a Dovetail limiter is afforded by 
consideration of the stress wave intensity at the payload- 
Dovetail interface. Since this interface is effectively a 
rigid joint, a compression wave traveling along the cen- 
trally loaded cell will reflect as a compression wave and 
double in intensity. Thus, assuming no dispersion of the 
axial wave and neglecting curvature effects at the inter- 
face, it may be conservatively stated that crushing of the 

Dovetail at the interface will not 
waves, provided 

UCi  
- > 2  
-00 

where 

occur due to stress 

uCi = axial crushing stress of Dovetail at the payload- 
Dovetail interface 

aco = axial crushing stress of Dovetail at the outer 
surface 

C. Payload Penetration-"Cannonball" Effect 

During the deceleration process, it is possible for the 
stress developed at the payload-Dovetail interface for 
a given impact limiter to exceed the crushing stress of 
the Dovetail honeycomb. If this condition occurs, the 
payload will penetrate the honeycomb material. Clearly, 
this behavior is undesirable, since only a small amount 
of Dovetail will be crushed (and, therefore, a small 
amount of kinetic energy dissipated) in a region where 
a significantly larger amount of Dovetail is available. 

To provide a design check against possible payload 
penetration of the Dovetail, an expression for the maxi- 
mum payload deceleration at which this phenomenon 
occurs will now be developed. The value of the maximum 
payload deceleration as predicted by this expression may 
then be compared to that of the maximum limiter decel- 
eration as given by Eq. (58) to ensure that the former 
does not equal or exceed the latter. 

Neglecting the contribution of the tensile strength of 
the upper half of the Dovetail sphere (Fig. 3) to the 
total force resisting payload penetration, the equation of 
monition governing the payload deceleration process can 
conservatively be written as 

(?)%=Pc 

where 

Pc = compressive force acting on the payload below 

Z p  = payload deceleration 

the equator 

But, for maximum payload deceleration 
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Substituting Eq. (71) in Eq. (70) yields and 

From the geometry of Fig. 3, it can be shown that at the 
payload-Dovetail interface 

pD, = Dovetail weight density at outer surface 

Solving Eq. (76) for d gives 
dA(+) = 277 Rg sin + d+ 

Substituting Eq. (73) in Eq. (72) yields 

(73) 
d = [= + Ri]‘^-  Rp 

4x PDo 

But, by the definition of the payload fraction, 

From Eqs. (58) and (74), it is ‘Iear that Payload Pene- Substituting Eq. (75) in Eq. (78) and the resulting equa- 
tration of the Dovetail honeycomb wfl not occur pro- 
vided 

tion in Eq. (77-) yields 

D. Design Relations 

1. Relations independent of limiter weight. Introducing 
the concept of a payload fraction as defined in Sec- 
tion I-C, it is possible to develop a set of design relations 
that are independent of the impact limiter mass. These 
relations consist of expressions for maximum impact ve- 
locity, levels of constant deceleration, and impact limiter 
size as functions of the payload fraction and a given set 
of geometric and material limiter constants. Relationships 
of this type sigdcantly reduce the number of cases to 
be analyzed for design purposes. In developing these 
relations, it is convenient to express the payload and 
Dovetail weights as follows: 

(75) 
4 

W P = - ~ R i p p  3 

(79) 
Rp= 1 

p - ( 3 + 1 ] % - 1  

and 

(1 + $) = [E(?) + 11% 
(80) 

7 

Equation (79) indicates that, in terms of the payload 
fraction, the spherical curvature ratio R,/d is independent 
of the impact limiter mass. 

Using Eq. (58) as the basis for developing the maximum 
impact velocity V, as a function of the payload fraction 
and the limiter constants, it is evident that the maximum 
impact velocity is a function of, among other things, the 
Dovetail weight density pD (9, e). However, pD (+, e) as given 
by Eq. (14) can be reworked to eliminate the Dovetail 
weight W D .  

Substituting Eq. (75) in Eq. (78) and the resulting equation in Eq. (14) yields 
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Substituting Eqs. (79) and (80) in Eq. (81) results in the following Dovetail density equation that is independent of 
weight: 

(q PP 
\ ’I I 

P ~ t + , e )  = {[:() + 1 1 ~ -  l}{[E(+) + 1 I Y ( 3 ( [ - 3 3  + 1 ] % ( 3  + 1) + I }  

Now by substituting Eqs. (75), (78), (79), and (80) in Eq. (58) and rearranging terms, the maximum impact velocity 
can be expressed as shown in Eq. (83) on page 15. 

Since it has been shown in Eq. (82) that the Dovetail 
density is independent of weight, it is evident upon elim- 
ination of the payload radius terms in Eq. (83) that the 
maximum impact velocity is independent of weight. 

Also, it can be seen that the impact limiter deceleration, 
as given by the bracketed term “A” of Eq. (83), varies 
inversely with the payload radius. Cubing the bracketed 
term “A” and then multiplying by the total limiter weight 
results in an expression that is a function only of the 
payload fraction and the limiter constants. Letting W ,  
be the total limiter weight, i.e., W ,  = W p  + WD, and the 
value of the bracketed term “A” be N ,  the following rela- 
tionship can be formed: 

* = W,N3 (84) 

By &e definition of the payload fraction and the use of 
Eqs. (75) and (83), Eq. (84) may be rewritten as 

N3 

Since the payload radius terms cancel out of the expres- 
sion for q, it is evident that Eq. (85) is independent of 
limiter weight. Letting N be the maximum limiter decel- 
eration FL (number of gs), it follows that + represents a 
parameter for maximum deceleration that will vary as a 
function of the payload fraction for a given set of limiter 
constants. Through the use of Eq. (85), levels of constant 
&mum deceleration can be developed as a function 
of the payload fraction and the limiter constants repre- 
senting different design cases. 

In a similar manner, a parameter for the maximurn 
“cannonball” deceleration can be developed that is a 

function of the payload fraction and the limiter constants. 
Substituting Eq. (75) in Eq. (74) and expressing the re- 
sulting maximum deceleration equation in number of gs 
yields 

Then, as before 

For the same payload fraction and impact limiter con- 
stants, Eqs. (87) and (85) can be compared to determine 
if payload penetration can occur for the limiter design 
under consideration. Payload penetration will not occur 
provided 

h,l * 
To determine the total limiter radius as a function of 

the payload fraction and the limiter constants, use is made 
of Eq. (76). Noting that the total limiter radius R, can be 
expressed as the sum of the payload radius and Dovetail 
core depth, Eq. (76) can be rewritten as 

But, from the definition of the payload fraction, the follow- 
ing expression can be formed: 

3 :. = - [(z - 1) 3 + 11 (89) 4~ 
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Equation (89) shows that, independent of limiter weight, 
the total limiter radius parameter varies linearly with 
the payload fraction for a given set of limiter constants. 
As in the case of maximum limiter deceleration, levels 
of constant limiter radius can be developed for design 
purposes. 

From Eqs. (83), (85), (87), (89), (30), and (28), it is seen 
that the parameters affecting the design relations include 
7, pp, pDr, ,  tf, LD, ijcl. However, since the Dovetail foil thick- 
ness and weight density are synonymous, it is possible to 
develop a relationship between the foil thickness and the 
weight density of the Dovetail at the outer limiter surface, 
thereby reducing the number of design parameters by one. 
This relationship is presented in the following section. 

2. Dovetail foil thickness-spherical outer density rela- 
tion. The density at the outer surface can also be defined 
as the weight of a single Dovetail cell divided by the 
volume of that cell, that is, 

wc. 
pn, = - V,. 

Since the Dovetail is composed of phenolic resin built up 
on a glass cloth core, the weight of a single cell (neglecting 
the weight of the node bond adhesive) can be expressed as 

where 

wG = weight of glass cloth in one cell 

w,, = weight of phenolic resin in one cell 

Substituting Eq. (6) in Eq. (96) and integrating yields 

Now 

wc; = yr;ac. 

where 

yG = unit weight per in.' of glass cloth area 

ac = surface area of a Dovetail cell 

Then, from Fig. 2, Eq. (92) may be written as 

:. w(; = 2y,L,d(l + k) 

For the weight of the phenolic resin: 

w/, = y/, (;) [2L, + 4kL,] d 

:. wp = yptf L,d(l + 2k) 

Substituting Eqs. (93) and (94) in Eq. (91) yields 

W C  = 2yGLDd (1 + k) + y[,tfLnd(l + 2k)  

Now the Dovetail cell volume may be written as 

(93) 

(94) 

(95) 

(96) 

Substituting Eqs. (95) and (97) in Eq. (90) results in the following expression for the Dovetail density at the outer sur- 
face of the sphere: 
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Alternatively, substituting Eqs. (27), (79), and (80) in Eq. (98) and solving for tf yields 

IV. Comments 

The analysis capability presented in this report is intended to provide a basis both for evaluating a proposed Dove- 
tail spherical limiter design and for developing design charts useful in parametric studies. In utilizing the analysis 
capability care must first be taken to develop design configurations that do not exceed the physical limitations of 
a Dovetail honeycomb (Ref. 1). 

Nomenclature 

area at crushing boundary 

cross-sectional area of Dovetail cell 

surface area of Dovetail cell 

stress wave velocity along a centrally loaded 
Dovetail cell 

Dovetail core depth (thickness) 

crushing depth (thickness) 

modulus of elasticity of phenolic resin 

force at the crushing boundary 

force acting on system of particles 

gravitational constant 

honeycomb land dimension 

linear momentum of system of particles in X 
direction 

uncrushed mass of impact limiter 

general particle within control volume 

compressive force acting on payload below 
equator 

general point on control volume boundary 

RP 
Ro 

S 

T 
t 

payload radius 

total limiter radius 

system of particles 

total limiter stopping time 

time 

Dovetail cell foil thickness 

velocity of mass transfer boundary 

impact limiter velocity 

initial contact velocity 

maximum impact velocity 

control volume 

crushed volume of sphere 

particle velocity 

Dovetail honeycomb crushed weight 

Dovetail total weight 

payload total weight 

total impact limiter weight 

weight of glass cloth in one cell 
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Nomenclature (contd) 

weight of phenolic resin in one cell 

height of limiter CG above crushing surface 

height of limiter crushing boundary above crush- 
ing surface 

impact limiter velocity 

maximum Dovetail deceleration 

payload deceleration 

maximum Dovetail expansion 

thickness efficiency 

unit weight per in.2 of glass cloth area 

weight density of phenolic resin 

length of general Dovetail cell 

limiter payload fraction 

dnurz 

off -axis crushing stress reduction parameter 

particle mass density 

Dovetail weight density 

Dovetail weight density at spherical outer surface 

payload weight density 

Dovetail crushing stress at crushing boundary 

axial crushing stress of Dovetail at payload- 
Dovetail interface 

axial crushing stress of Dovetail at outer surface 

general axial crushing stress of Dovetail 

angular location of general Dovetail cell 
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